
Long et al. Cerebellum & Ataxias 2014, 1:9
http://www.cerebellumandataxias.com/content/1/1/9
REVIEW Open Access
Alleviating neurodegeneration in Drosophila
models of PolyQ diseases
Zhe Long1, Beisha Tang1,2,3 and Hong Jiang1,2,3*
Abstract

Polyglutamine (polyQ) diseases are a group of neurodegenerative conditions, induced from CAG trinucleotide repeat
expansion within causative gene respectively. Generation of toxic proteins, containing polyQ-expanded tract, is the
key process to cause neurodegeneration. Till now, although polyQ diseases remain uncurable, numerous therapeutic
strategies with great potential have been examined and have been proven to be effective against polyQ diseases,
including diverse small biological molecules and many pharmacological compounds mainly through prevention on
formation of aggregates and inclusions, acceleration on degradation of toxic proteins and regulation of cellular function.
We review promising therapeutic strategies by using Drosophila models of polyQ diseases including HD, SCA1, SCA3
and SBMA.
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Introduction
Among the unstable repeat expansion disorders, the
dominantly inherited polyQ diseases caused by CAG
repeat expansions within responsible genes are the most
common group [1]. The first discovered polyQ disorder
was Spinal bulbar muscular atrophy (SBMA), also known
as Kennedy’s disease which is X-linked, in 1991, a dy-
namic repeat mutation in the androgen receptor (AR)
gene [2]. Since then at least eight additional polyQ
diseases have been identified. To date, this group in-
cludes the distinct Spinocerebellar Ataxias (SCA1, SCA2,
SCA3/Machado–Joseph disease, SCA6, SCA7 and SCA17)
[3-5], dentatorubral-pallidoluysian atrophy (DRPLA),
Huntington disease (HD), and most recently, Huntington
disease-like 2 (HDL2) [6]. Generally, compared with other
neurodegenerative diseases, polyQ diseases have low preva-
lence. 1 ~ 3/100 000 Europeans have autosomal dominant
cerebellar ataxias (ADCAs) [7], such as SCA1, SCA2,
SCA3/MJD, SCA6, SCA7 and SCA17, while 1.6/100 000
individuals have SBMA [8] and 5 ~ 7/100 000 white people
suffered HD [9].
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In all polyQ disorders, the abnormally translated poly-
glutamine domain in the corresponding disease protein
would lead to dysfunction and pathogenic effects, when
the CAG repeat expansion in respective causative genes
surpasses a pathological threshold. The involvement of
the polyQ-expanded domain in pathogenic mechanisms
has been illustrated in various ways. For toxic effects,
several intracellular molecular mechanisms have been
illustrated, including formation of aggregates [10-14],
dysregulation of cellular protein homeostasis [15-18], al-
ternations in transcription [19-24], impairment of axonal
transport [25,26], mitochondrial dysfunction [27-29] and
harassment of intracellular Ca2+ homeostasis [30-34].
PolyQ disorders share numerous common traits includ-
ing progressive neurodegeneration in specific neuronal
populations, formation of protein aggregates and the
negative correlation between the number of CAG repeats
and the age of onset which means the greater number of
such repeats leads to the earlier onset of the diseases
[35-38]. Despite these common aspects, however, there
are respective aspects to polyQ diseases as well. Each
polyQ disease is a distinctive disorder with characteristic
symptomatic profiles and different neurodegeneration
occurring in particular brain regions. Although the ex-
panded proteins are prevalently expressed throughout
the CNS, there are two remarkable exceptions: SCA6
and Kennedy’s disease. The CACNA1A calcium channel
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subunit in SCA6 is primarily expressed in affected cere-
bellar Purkinje cells, while the AR in Kennedy’s disease
is principally expressed in vulnerable motor neurons.
Additionally, the various properties of each of PolyQ
disease proteins differ in subcellular localization, struc-
ture, activity and biological function, suggesting that
the specific details of pathogenic effects may be unique
to each disease [2].

Review
Advantages of drosophila as genetic models for
polyQ disease
Application of animal models is a powerful approach to
address some of the outstanding questions underlying
polyQ disease. Although modelling neurological diseases
in rodent has been of significant impact, using dros-
ophila melanogaster model offers many advantages for
pathogenic mechanism and therapeutic compounds.
Due to the shorter life span, rapid reproductive cycle, ac-
cessibility of several techniques and tools to modulate
gene expression, and comparatively well-known anatomy
and phenotypes, fruit fly prefer faster polyQ modelling
[39,40]. In addition, using GAL4/UAS system [41], we
can manipulate the expression level of transgene and ex-
pression in specific cell types [42]. Drosophila and human
genomes are characterized a high degree of conservation
in fundamental biological pathways [43]. With the few
chromosome number, convenient genetic operation, sim-
ple inherited background, drosophila model has great
value in functional analysis of human disease genes.
Moreover, high-throughput pharmalogical screens are
also possible due to the minimal barrier in central ner-
vous system, although flies have a complex nervous sys-
tem and brain [44]. Up till now, several Drosophila
models of polyQ diseases have been developed, including
SCA1, SCA2, SCA3/MJD, SCA7, SCA17, DRPLA, HD
and SMBA. Moreover, several human pathological fea-
tures, including formation of inclusions, neural degener-
ation, motor dysfunction and premature lethality, have
successfully been recapitulated in Drosophila models of
polyQ [45-49].

Therapeutic strategies for polyQ diseases
According to pathogenic hypothesis mentioned above,
therapeutic strategies could target on the general toxic
mechanism triggered by expanded polyQ. Generally,
therapeutic strategies classified into targeting prevention
on formation of aggregates and inclusions, targeting ac-
celeration on degradation of toxic proteins and regula-
tion of cellular function (Table 1).

Prevention on formation of aggregates and inclusions
Insoluble aggregates present toxic effects for neurons
and result in cell death and organism pathology [11].
PolyQ diseases seem to be originated by proteolytic cleav-
age of mutant protein containing polyQ-expanded tract to
form toxic fragments [9,10], which aberrantly fold into
amyloid-like aggregates (oligomers), then assemble into
nuclear and cytoplasmic deposits which are the cellular
hallmarks of polyQ diseases. The neuronal protein aggre-
gates mainly present in nucleus (SCA1, SCA2, SCA3/MJD,
SCA7, SCA17 and DRPLA), cytoplasm (SCA6) or both
cytoplasm and nucleus (HD and SBMA) (Figure 1) [76,77].

RNA interference-based therapeutics
Mutant polyglutamine protein expression could be
inhibited by RNA interference (RNAi). Inhibiting for-
mation of mutant protein containing expanded polyQ
tract, RNAi is the most straightforward approach to se-
lectively decrease expression of the mutant allele. Xia
et al. and Harper et al. have successfully testified that ad-
ministration of RNAi, against ATXN1 or IT15, improved
the motor impairment in SCA1 and HD transgenic mice
models [78,79]. Similarly, in several Drosophila models of
human polyQ disorders including SCA3/MJD, SCA1 and
HD, Mallik et al. [50] discovered that RNAi suppress
pathogenesis of polyQ diseases by down-regulating tran-
scripts of hsr-ω, a dominant modifier for polyQ patho-
genic mechanism found in Drosophila model of SCA1
[42]. Co-expressing hsrω-RNAi transgenes suppresses ex-
panded polyQ-induced eye-specific degeneration, dimin-
ishes toxicity of mutant polyQ protein in nervous system
and inhibits polyQ protein aggregation.

Therapeutic pharmacological compounds
A variety of chemical compounds with great potential
have been proven effective for treatment of polyQ diseases
by using Drosophila model of HD through preventing
polyQ-expanded aggregation. Cystamine, methylene blue
(MB), camptothecin, OH-camptothecin, 18b-glycyrrhetinic
acid and carbenoxolone are promising therapeutics for
HD. Cystamine, a competitive inhibitor of tissue transglu-
taminase (tTG), was thought to reduce Huntingtin (Htt)
aggregation by interfering with tTG-mediated glutamine
crosslinking [51,52]. Bortvedt el at discovered that in adult
HD flies co-treatment of feeding cystamine and expressing
a transgene encoding the anti-htt intracellular antibody
(intrabody) C4-scFv leads to alleviation of photoreceptor
neurodegeneration without benefit in longevity, however in
larval and adult stages of Drosophila feeding cystamine
showed opposite effect: longevity was prolonged without
photoreceptor rescue [53]. MB has reported promotion of
degradation androgen receptor polypeptides [80] and in-
hibition of mutant Htt aggregation [81]. Sontag et al. found
that administrating MB to Drosophila of HD significantly
increased the rhabdomeres number accompany with a de-
crease in Htt-mediated neurodegeneration. In addition,
treating MB in the larval stages reduced the aggregates



Table 1 Therapeutic strategies tested in Drosophila model of polyQ diseases

Therapeutic strategy Functional mechanism Drosophila model Therapeutic result Reference

RNAi Inhibiting formation of
polyQ-expanded protein

SCA1, SCA3, HD Positive Mallik et al. [50]

Cystamine reducing Huntingtin (Htt)
aggregation

HD Positive Apostol et al. [51]

Agrawal et al. [52]

Bortvedt et al. [53]

Methylene blue (MB) Inhibiting Htt aggregation HD Positive Sontag et al [54]

18b-glycyrrhetinic acid Inhibiting Htt aggregation HD Positive Schulte et al. [55]

Camptothecins Inhibiting Htt aggregation HD Positive Schulte et al. [55]

OH-camptothecin Inhibiting Htt aggregation HD Positive Schulte et al. [55]

Carbenoxolone Inhibiting Htt aggregation HD Positive Schulte et al. [55]

Polyglutamine binding peptide 1
(QBP1)

Inhibiting polyQ aggregation SCA3/MJD Positive Nagai et al. [56]

P42 Inhibiting polyQ-hHtt aggregation HD Positive Arribat et al. [57]

Hsp70 Reversing toxic structure of
polyQ-expanded proteins

SCA3/MJD, SBMA Positive Warrick et al [58]

Wang et al [59]

Hsp40 Reversing toxic structure of
polyQ-expanded proteins

HD Positive Kazemi et al [49]

Kuo et al. [60]

Hsp110 Reversing toxic structure of
polyQ-expanded proteins

HD Positive Kuo et al. [60]

Hsp22 Reversing toxic structure of
polyQ-expanded proteins

SCA3/MJD Positive Li et al. [61]

Rapamycin Accelerating toxic proteins
degradation

HD Positive but various
side-effects on human

Ravikumar et al. [62]

Morrisett et al. [63]

Letavernier et al. [64]

Kuypers et al. [65]

Maroto et al. [66]

Lithium chloride (LiCl) Accelerating toxic proteins
degradation

SCA3/MJD Positive Jia et al. [67]

Normal ataxin-3 Accelerating toxic proteins
degradation

SCA3/MJD Positive Warrick et al. [68]

Hsp104 Accelerating toxic proteins
degradation

SCA3/MJD Positive Cushman et al. [69]

Sodium butyrate Transcriptional regulation HD Positive Steffan et al. [70]

Suberoylanilide hydroxamic acid
(SAHA)

Transcriptional regulation HD Positive Steffan et al. [70]

Trichostatin A (TSA) Transcriptional regulation SCA3/MJD Positive Jung et al. [71]

Valproic acid (VPA) Transcriptional regulation SCA3/MJD Positive Yi et al. [72]

Myc Transcriptional regulation SCA3/MJD Positive Singh et al. [73]

Uncoupling proteins (UCPs) Ameliorating mitochondrial
dysfunctions

HD Positive Besson et al. [74]

Meclizine Ameliorating mitochondrial
dysfunctions

HD Positive Gohil et al. [75]
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number by 87% and diminished the aggregates size, sug-
gesting that MB could be promising therapeutic drug for
HD through the regulation of aggregation [54]. Addition-
ally, Schulte el at by screening the subcellular distribution
of Htt labeled by mRFP and monitoring the morphology
of cultured neurons via live-imaging discovered 18b-
glycyrrhetinic acid, as well as camptothecins, OH-
camptothecin, carbenoxolone inhibited formation of Htt
aggregate, restored neurite morphology and viability in
Drosophila HD model [55].



Figure 1 The intra-cellular sites of toxic effects of proteins in polyQ disorders. PolyQ aggregates induce cytotoxic effects through a
range of mechanisms. To form insoluble inclusions, compiling of polyQ-expanded protein provoke quality-control mechanisms including
ubiquitin–proteasome system, chaperones and autophagy. By interacting with transcriptional factors, the toxic polyQ proteins could regulate
transcriptional processes. Other cellular sites of toxic effects induced by polyQ mutant proteins include Ca2+ channel, mitochondria, and
cytoskeleton with diverse abnormalities respectively.
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Molecular therapeutics
Accumulation of aggregates to form inclusions recruits
cellular normal proteins, such as molecular chaperones,
which suggests that polyQ-expanded domain changes
protein structure and activates chaperones against pro-
tein misfolding [82]. The finding that expanded polyQ
tract is capable of transiting into diverse conformations
is also affirmed by evidence that, in fly (SCA3/MJD, HD)
and mouse (SCA1) models, overexpression of molecular
chaperones represses toxicity [83,84]. Thus, several bio-
logical molecules may thought to be potential therapeu-
tics targeting prevention on formation of pathogenic
aggregates and toxic structure of polyQ proteins, such as
polyglutamine binding peptide 1 (QBP1), a peptide P42,
chaperones heat shock proteins including heat shock
protein 70 (Hsp70), Hsp40, Hsp110 and Hsp22. Applica-
tion of QBP1 which is capable of selectively binding to
the polyQ-expanded stretch suppresses compound eye
degeneration, polyQ aggregates formation and rescues
premature death in SCA3/MJD Drosophila model [56],
suggesting that QBP1 is a potential therapeutic molecule
on polyQ disorders. P42, a 23 amino acid-long peptide
which is a part of the endogenous Htt protein, plays a
protective role in preventing polyQ-hHtt aggregation,
improving the impaired axonal transport by restoring
the total number and motion of vesicles, ameliorating
behavioral dysfunctions and against polyQ-hHtt induced
toxicity in HD Drosophila model. However, no pro-
tective effects were found in other polyQ diseases [57].
Although the toxic conformation of polyQ proteins re-
mains elusive, therapeutic strategy targeting on toxic
structure of expanded polyglutamine proteins may be a
promising approach against untreatable polyQ disease.
In Drosophila melanogaster model of SCA3/MJD, co-
expressing the human gene HSPA1L which encodes
Hsp70, Warrick et al. discovered that Hsp70 completely
rescued external eye pigmentation, partially restored
retinal structure of brain, and partially restored adult
viability, suggesting that molecular chaperone Hsp70
suppresses polyglutamine-induced neurodegeneration
and toxicity as well as indicating that HSP70 would be a
promising candidate with great potential as a treatment
method [58]. Additionally, in a Drosophila model of
SBMA, Adrienne et al. demonstrated that Hsp70 with its
co-chaperone Hip which enhances Hsp70 binding to its
substrates accelerated polyQ AR clearance, and identified
that Hsp70 with YM-1, a synthetic co-chaperone that acts
similarly to Hip, also enhanced polyQ AR degradation
and suppressed toxicity of poyQ AR in Drosophila [59].
Similarly, Kazemi et al. by screening the fly genome for
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genes modulating the toxicity of polyglutamine, predicted
dHDJ1, homologous to human Hsp40/HDJ1, and dTPR2,
homologous to the human tetratricopeptide repeat pro-
tein 2 (TPR2) suppressed the toxicity of polyQ aggregates
and verified in Drosophila models of polyQ diseases [49].
In addition, Y Kuo el at further demonstrated that co-
expression of the HSP40 family protein DNAJ-1 and
Hsp110 family protein, 70 kDa heat-shock cognate protein
cb (HSC70cb), function together to suppress the cytotox-
icity of mutated huntingtin in Drosophila HD model. Fur-
thermore, DNAJB1, a human Hsp40, co-expressed with
APG-1, a human Hsp110, in cells from HD Drosophila had
a dramatic protective effect on polyQ-induced neural de-
generation, whereas either component alone had little ef-
fect [60]. In our previous studies, using several types of
SCA3/MJD Drosophila models, we have provided convin-
cing proof that Hsp22 would be promising therapeutic
agents with great potential against SCA3/MJD. Expression
of MJDtr-Q78, a polyQ-expanded tract, showed signifi-
cantly obvious SCA3/MJD phenotype including dramatic
neurodegeneration, and completely faded pigmentation in
adult flies with black point-like necrosis. Drosophila co-
expressed polyQ-expanded protein together with either
one or two copies of HSP22 gene intervened by heat shock,
leading to differing corresponding mRNA levels mainly de-
pending on the induced number of HSP22 gene copies.
Findings suggested that Hsp22 showed positive influence
on eye depigmentation (Figure 2), growth restriction, abil-
ity for eclosion and median lifespan [61].
Figure 2 SCA3/MJD Drosophila that expresses polyQ-expanded tracts
rescues polyQ-induced eye depigmentation in Drosophila model of SCA3/M
showing, dissecting microscope (A, ×65; B, ×115; C, ×80) and electron mic
Acceleration on degradation of toxic proteins
Stimulation of cellular protein degradation mechanisms
that target misfolded causative mutant proteins might be
potential against polyQ diseases. Activation of autophagy
and several small molecules presented positive influence
on disease proteins clearance. By stimulating autophagy,
rapamycin, the mTOR inhibitor, suppressed neurodegen-
eration in cell, Drosophila and mouse disease models
[62,85,86] However, the various deleterious side-effects
including dysfunction of kidney and lung, increased risk
of infection and hyperlipidemia, prevent it from widely
using in polyQ diseases [63-66]. In HD Drosophila
model, lithium (Li) acting through the Wnt/Wg path-
way, as a glycogen synthase kinase-3 (GSK3) β-specific
inhibitor, showed protective effects against the toxicity
caused by aggregates of causative polyQ proteins [87].
Similarly, since Li plays neuroprotective role in nu-
merous models of neurodegenerative disorders and
could induce autophagy for reducing the mutant protein
aggregates, in our previous study, we confirmed its neu-
roprotective effects against protein toxicity induced by
polyQ repeat expansion. As SCA3/MJD is the most com-
mon spinocerebellar ataxia in minland China [88,89], we
used SCA3/MJD Drosophila model, and expression of
MJDtr-78Q in Drosophila lead to late-onset, progressive,
neurodegenerative phenotypes, including faded eye pig-
mentation, impaired locomotor ability and reduced life
spans in adult flies. A series of daily dose of lithium chlor-
ide (LiCl) were administered to SCA3/MJD Drosophila
in fly compound eyes. Overexpression of Hsp22, VPA and LiCl
JD. (A) Hsp22, (B) VPA, (C) LiCl. Paired images of adult fly eyes are

roscope (×1000).
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model prior to cross-breeding. We affirmed that long-term
use of LiCl at specific doses notably inhibited eye depig-
mentation (Figure 2), alleviated locomotor disability, and
prolonged the median lifespan [67]. Additionally, it is well
acknowledged that the pathogenesis of SCA3/MJD is in-
volved with pathogenic ataxin-3 induced by expanded
polyglutamine repeat in ATXN3. Interestingly, normal hu-
man ataxin-3 is thought to be a neuroprotective protein
that acts as a polyubiquitin binding protein with ubiquitin
protease activity [90-93]. In Drosophila, normal ataxin-3
rescues neurodegeneration from expanded polyQ proteins,
highlighting its potential therapeutic role for polyQ dis-
eases [68]. Another small molecule, Hsp104,a protein
disaggregase, can rapidly resolubilize denatured protein ag-
gregates and restore function of proteins [94,95]. Recently,
in SCA3/MJD Drosophila model, proof has been provided
that Hsp104 suppressed toxicity of pathogenic protein,
mitigating disease progression [69].

Regulation of cellular function
Transcriptional regulation
Toxic polyglutamine proteins inclined to deposit in the
nucleus, indicating that these compiling proteins might
interact with transcriptional factors or cofactors and lead
to alterations of transcription. Interactions of these acu-
mulating proteins with specific transcriptional factors or
cofactors may disturb gene expression, and thus initiate
neurodegeneration. Therapeutic strategy target on this
has been testified neuroprotective effects against polyQ
diseases. Histone acetylation and deacetylation is a post-
translational modification of proteins, which regulates
gene transcription by changing the compactness of nu-
cleosome polymers. An imbalance in histone acetylation
may be a key process causing transcriptional dysregula-
tion involved in polyQ diseases. Several histone deacety-
lase (HDAC) inhibitors have been proven increase gene
expression in diverse disease models, such as suberoyla-
nilide hydroxamic acid (SAHA), sodium butyrate, and
phenylbutyrate [50,96-100]. In Drosophila models of
HD, HDAC inhibitors, including sodium butyrate and
SAHA, prevent developing progressive neuronal degen-
eration caused by mutant polyglutamine repeat expansion,
and reduce lethality. These findings present therapeutics
for polyQ diseases, even after the onset of symptoms, treat-
ment with HDAC inhibitors are still capable of slowing or
arresting the progressive neurodegeneration [70]. Adeno-
sine 3′, 5′-monophosphate (cAMP) response element–
binding protein (CREB)–binding protein (CBP) [101,102],
a histone acetyltransferase (HAT) found in polyQ inclu-
sions, its decreased activity contributes to polyQ disease.
In SCA3/MJD Drosophila model, trichostatin A (TSA)
protected against the increased rate of repeat instability, by
compensating for decreased Drosophila CBP and/or HAT
activity [71]. Additionally, we utilized HDAC inhibitor
valproic acid (VPA) [72], a potential therapeutic agent, in
Drosophila SCA3/MJD model. Deleterious phenotypes,
including faded eye pigmentation, decreased climbing
ability and shortened average life span, were similar to
characteristics of SCA3/MJD patients. To examine the
therapeutic effects of VPA in vivo, daily doses of VPA at
various levels were administered to SCA3/MJD Dros-
ophila before cross-breeding. We suggested that chronic
treatment with VPA at optimum dose partly arrested eye
depigmentation (Figure 2), ameliorated climbing disability,
and prolonged the average lifespan of SCA3/MJD trans-
genic Drosophila.
Additionally, present researches direct to detect genetic

modifiers that rescue polyQ degeneration, thus provide a
novel target for testing therapeutic strategies. Recenly,
Yamanaka et al applied RNAi screening in mouse neuro2a
cells to identify modifiers for mutant huntingtin aggre-
gates, and identified 111 shRNAs including 63 shRNAs
suppressing huntingtin aggregation and 48 shRNAs per-
forming an opposite effect [103]. We look forward to fur-
ther study on testing neuroprotective effects of these 63
shRNAs for HD in vivo. Another study on genetic modi-
fier in SCA3/MJD model of Drosophila confirmed that
up-regulation of dMyc, a homologue of human cMyc
proto-oncogene, could restore morphology and functional
vision of eyes and suppress lethality by increased cellular
level of CBP, which subsequently improve the status of
histone acetylation and finally inhibit the compiling of
polyQ aggregates [73].

Amelioration of mitochondrial dysfunctions
Compared with polyQ disease proteins, expanded CAG
mutant transcripts are different polyQ pathogenic spe-
cies to induce neurodegeneration [104]. Nucleolar stress
is a p53-mediated pathway through which the nucleolus
communicates with mitochondria to induce apoptosis by
down-regulation of ribosomal RNA (rRNA) expression
[105]. The nucleolar stress is activated by the expanded
CAG mutant transcripts interacting directly with nucleolin
(NCL), an essential protein for rRNA transcription, result-
ing in down-regulation of NCL binding to upstream
control element (UCE) of the rRNA promoter [106],
subsequently, UCE DNA CpG hypermethylation and the
down-regulation of rRNA transcription [104]. Conse-
quently, apoptosis is provoked by p53 protein accu-
mulating in the mitochondria, which causes cytochrome c
release and caspase activation [106]. Additionally, evidence
that mitochondrial dysfunction is correlated with HD
pathogenesis has been presented, by identified N-terminal
expanded htt on neuronal mitochondrial membranes
through electron microscopy [27]. According to these,
numerous biological molecules and pharmacological
compounds have shown efficacy in treatment for polyQ
diseases, particularly for HD. Mitochondrial uncoupling
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proteins (UCPs), anion-carrier proteins located in the
inner membrane of mitochondrial, modulate ATP and
reactive oxygen species in mitochondria. Although UCPs
failed to prevent the HD toxicity in neurons, by using
genetic approaches in Drosophila, up-regulation of UCPs
alleviated the HD locomotor behavior and early death
of Drosophila when mHtt was selectively expressed
in glia [74]. Additionally, inhibition of transglutaminase 2
(TG2), a transcriptional co-repressor, not only corrects
transcriptional dysregulation in HD but also normalizes
expression of mitochondrial genes, and protect neurons
from excitotoxicity [107]. Meclizine, a clinically used
drug that has correlated with mitochondrial respiration
suppression, in Drosophila melanogaster models of HD,
played a neuroprotective role against neuronal dystrophy
and cell death, implicating that meclizine, capable of cross-
ing the blood–brain barrier, may hold therapeutic potential
against HD [75].

Conclusion
To date, targeting the pathogenic mechanisms, the fact
that various therapeutic strategies have shown protective
efficacy in Drosophila models of polyQ diseases gives
new insight to researchers and clinical doctors as well as
presents hope for patients of these diseases. Unfortu-
nately, only a few of these therapeutic strategies have
been testing in clinical trial, and the clinical efficacy still
illusive. Anyhow, as Drosophila melanogaster presents
various advantages and convenience, we can anticipate
that in the future more therapeutic targets will be dis-
covered by further understanding the pathogenic mecha-
nisms on polyQ diseases, thus increasingly biological
molecules and pharmacological compounds for polyQ
diseases might be tested by employing Drosophila models,
and these models of polyQ diseases could provide diverse
options and clues for clinical application.
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